特征工程 | Feature Engineering

特征工程是机器学习工作流程中重要的组成部分,他是将原始数据「翻译」成模型可理解的形式。

本文将介绍特征工程的基本概念、重要性和性能评估的4个步骤。

特征工程的重要性

大家都听过美国计算机科学家 Peter Norvig 的2句经典名言:

基于大量数据的简单模型优于基于少量数据的复杂模型。

这句说明了数据量的重要性。

更多的数据优于聪明的算法,而好的数据优于多的数据。

这句则是说的特征工程的重要性。

所以,如何基于给定数据来发挥更大的数据价值就是特征工程要做的事情。

在16年的一项调查中发现,数据科学家的工作中,有80%的时间都在获取、清洗和组织数据。构造机器学习流水线的时间不到20%。详情如下:

数据科学家的工作中,有80%的时间都在获取、清洗和组织数据
数据科学家的工作中,有80%的时间都在获取、清洗和组织数据

  • 设置训练集:3%

  • 清洗和组织数据:60%

  • 收集数据集:19%

  • 挖掘数据模式:9%

  • 调整算法:5%

  • 其他:4%

PS:数据清洗和组织数据也是数据科学家「最讨厌」的工作。感兴趣的可以看这篇原始的文章:

数据来源:《Data Scientists Spend Most of Their Time Cleaning Data

什么是特征工程

我们先来看看特征工程在机器学习流程中的位置:

特征工程在机器学习流程中的位置
特征工程在机器学习流程中的位置

从上图可以看出,特征工程处在原始数据和特征之间。他的任务就是将原始数据「翻译」成特征的过程。

特征:是原始数据的数值表达方式,是机器学习算法模型可以直接使用的表达方式。

特征工程是一个过程,这个过程将数据转换为能更好的表示业务逻辑的特征,从而提高机器学习的性能。

这么说可能不太好理解。其实特征工程跟做饭很像:

我们将食材购买回来,经过清洗、切菜,然后开始根据自己的喜好进行烹饪,做出美味的饭菜。

特征工程跟做饭很像
特征工程跟做饭很像

上面的例子中:

食材就好像原始数据

清洗、切菜、烹饪的过程就好像特征工程

最后做出来的美味饭菜就是特征

人类是需要吃加工过的食物才行,这样更安全也更美味。机器算法模型也是类似,原始数据不能直接喂给模型,也需要对数据进行清洗、组织、转换。最后才能得到模型可以消化的特征。

除了将原始数据转化为特征之外,还有2个容易被忽视的重点:

重点1:更好的表示业务逻辑

特征工程可以说是业务逻辑的一种数学表达。

我们使用机器学习的目的是为了解决业务中的特定问题。相同的原始数据有很多种转换为特征的方式,我们需要选择那些能够「更好的表示业务逻辑」,从而更好的解决问题。而不是那些更简单的方法。

重点2:提高机器学习性能

性能意味着更短时间和更低成本,哪怕相同的模型,也会因为特征工程的不同而性能不同。所以我们需要选择那些可以发挥更好性能的特征工程。

评估特征工程性能的4个步骤

特征工程的业务评估很重要,但是方法五花八门,不同业务有不同的评估方法。

这里只介绍性能的评估方式,相对通用一些。

评估特征工程性能的4个步骤
评估特征工程性能的4个步骤

  1. 在应用任何特征工程之前,得到机器学习模型的基准性能

  2. 应用一种或多种特征工程

  3. 对于每种特征工程,获取一个性能指标,并与基准性能进行对比

  4. 如果性能的增量大于某个阈值,则认为特征工程是有益的,并在机器学习流水线上应用

例如:基准性能的准确率是40%,应用某种特征工程后,准确率提升到76%,那么改变就是90%。

(76%-40%)/ 40%=90%

总结

特征工程是机器学习流程里最花时间的工作,也是最重要的工作内容之一。

特征工程定义:是一个过程,这个过程将数据转换为能更好的表示业务逻辑的特征,从而提高机器学习的性能。

特征工程容易被忽略的2个重点:

  1. 更好的表示业务逻辑

  2. 提高机器学习性能

特征工程性能评估的4个步骤:

  1. 在应用任何特征工程之前,得到机器学习模型的基准性能

  2. 应用一种或多种特征工程

  3. 对于每种特征工程,获取一个性能指标,并与基准性能进行对比

  4. 如果性能的增量大于某个阈值,则认为特征工程是有益的,并在机器学习流水线上应用

License:  CC BY 4.0

©2024 AI全书. Some rights reserved.

    备案号: 浙ICP备06043869号-8